Interrogation rapide n° 2

1 heure

I Questions de cours

- 1. Donner la définition d'un diviseur.
- 2. Donner la propriété concernant la combinaison linéaire.
- 3. Démontrer l'existence du couple (q, r) du théorème :

Théorème 1

Soient a et b deux entiers naturels, avec b non nul.

Il existe un unique couple d'entiers naturels (q, r) tel que a = bq + r avec $0 \le r < b$.

II Exercices

Exercice 1

Soit a et b deux entiers naturels tels que a divise 5b + 31 et a divise 3b + 12. Donner toutes les valeurs possibles pour a.

Exercice 2

 \mathbf{QCM}

Pour chacune des questions suivantes, entourer la (ou les) bonne(s) réponse(s).

Une réponse exacte rapporte 2 points. Une réponse fausse (ou incomplète) enlève 1 points et l'absence de réponse à une question ne rapporte ni n'enlève de point. Aucune justification n'est demandée.

- 1. Parmi ces nombres, lesquels admettent exactement 10 diviseurs?
 - **a.** 7^9

b. 7^{10}

c. 4^9

- **d.** 2×5^4
- 2. Si n-2 divise 3n+5, avec n un entier relatif, alors :
 - a. C'est impossible

b. n-2 divise 11

c. Le problème a 4 solutions dans \mathbb{N}

- **d.** n-2 divise 5.
- 3. L'équation $x^2 4y^2 = 3$, avec x et y des entiers relatifs, admet
 - a. aucune solution

b. une solution

c. deux solutions

d. quatre solutions

Exercice 3 VRAI/FAUX

Pour chacune des propositions suivantes indiquer si elle est vraie ou fausse.

Une réponse exacte rapporte 1 points. Une réponse fausse enlève 0,5 points et l'absence de réponse à une question ne rapporte ni n'enlève de point. Aucune justification n'est demandée.

• Soit n un entier relatif différent de -4.

Proposition 1 : « La fraction $\frac{5n+21}{n+4}$ est irréductible. »

• **Proposition 2** : « 4^{100} est divisible par 3 »

• Soit N un entier naturel dont l'écriture en base 10 est $\overline{aba7}$.

Proposition 3: « Si N est divisible par 7 alors a + b est divisible par 7. »

BONUS

Soit a et b deux entiers naturels non nuls. On suppose que a possède exactement trois diviseurs positifs et que b en possède exactement deux. Donner les valeurs possibles (lorsque a et b varient) pour le nombre D de diviseurs positifs de ab. On justifiera la réponse.